5,638,504

1

SYSTEM AND METHOD OF PROCESSING
DOCUMENTS WITH DOCUMENT PROXIES

This is a continuation, of application Ser. No. 08/210,
846, filed Mar. 21, 194, now abandoned.

COPYRIGHT NOTIFICATION

Portions of this patent application contain materials that
are subject to copyright protection. The copyright owner has
no objection to the facsimile reproduction by anyone of the
patent document or the patent disclosure, as it appears in the
Patent and Trademark Office patent file or records, but
otherwise reserves all copyright rights whatsoever.

FIELD OF THE INVENTION

The present invention generally relates to computer
systems, and more particularly to a method and system for
managing document proxies in a document processing sys-
tem.

BACKGROUND OF THE INVENTION

Object oriented programming (OOP) is the preferred
environment for building user-friendly, intelligent computer
software. Key elements of OOP are data encapsulation,
inheritance and polymorphism. These elements may be used
to generate a graphical user interface (GUI), typically char-
acterized by a windowing environment having icons, mouse
cursors and menus. While these three key elements are
common to OOP languages, most OOP languages imple-
ment the three key elements differently.

Examples of OOP languages are Smalltalk, Object Pascal
and C++ Smalltalk is actually more than a language; it
might more accurately be characterized as a programming
environment. Smalltalk was developed in the Learning
Research Group at Xerox’s Palo Alto Research Center
(PARC) in the early 1970s. In Smalltalk, a message is sent
to an object to evaluate the object itself. Messages perform
a task similar to that of function calls in conventional
programming languages. The programmer does not need to
be concerned with the type of data; rather, the programmer
need only be concerned with creating the right order of a
message and using the right message. Object Pascal is the
language used for Apple’s Macintosh® computers. Apple
developed Object Pascal with the collaboration of Niklaus
Wirth, the designer of Pascal. C++ was developed by Bjarne
Stroustrup at the AT&T Bell Laboratories in 1983 as an
extension of C. The key concept of C++ is class, which is a
user-defined type. Classes provide object oriented program-
ming features. C++ modules are compatible with C modules
and can be linked freely so that existing C libraries may be
used with C++ programs. The most widely used object based
and object oriented programming languages trace their heri-
tage to Simula developed in the 1960s by O-J. Dahl, B.
Myhrhaug and K. Nygard of Norway. Further information
on the subject of OOP may be had by reference to Object
Oriented Design with Applications by Grady Booch, The
Benjimin/Cummings Publishing Co., Inc., Redwood City,
Calif. (1991).

With the brief overview of OOP above in mind, document
processing has virtually revolutionized the way society
generates publications. Typical prior art document process-
ing systems run on top of operating systems, such as DOS.
More recently, these document processing systems have
been designed to run in a Windows environment. Many of
these document processing systems are commercially avail-

10

15

20

30

35

40

45

50

55

65

2

able. While these document processing systems have
improved the ability to process documents and text, there is
great inconsistency among document processors with
respect to processing methodologies. The result of these
inconsistencies creates problems for both application devel-
opers and users of the applications.

Application developers must continuously “reinvent the
wheel” when creating a new document processor. While
operating systems and interface programs provide some
tools which may be used, the great majority of the design
process for a particular document processor is directed
toward creating a group of processing modules which coop-
erate to allow a user to process documents. Application
developers often design processing modules which have
already been developed by another company. This requires
great duplication of effort, and requires each developer to
deal with the details of how to implement various desired
functions.

Most graphical computer interface systems provide a user
with an interface presented on a graphical display and access
to information in one or more graphically presented
entities—"‘documents”—, e.g. a word processor document
that allows the user to read and edit the contained textual
data. Several graphical computer user interface systems
available today, like that of the Apple® Macintosh®
computer, provide the user with the capability of graphically
managing and organizing multiple document entities repre-
sented as small manipulable graphic entities, e.g. “icons”.
An example of a function in such a system is the ability for
the user to request the movement of a document from one
containing entity to another by graphically dragging the
iconic representation of the document from one document
and dropping it onto another document. On currently avail-
able systems that support both of the above categories of
functions, the system makes the two categories of functions
available in disjoint modes of operation. For instance, on the
Apple Macintosh, a user must deviate from the mode of
editing an open document by switching to the Finder appli-
cation to perform the document management functions such
as moving a document. No system that applicant is aware of
has a proxy function for integrating document processing
into basic system operations.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a
document processing system utilizing a unique feature terms
a “proxy”. A proxy integrates external document manage-
ment functions simultaneously and seamlessly into the stan-
dard operating system document processing commands.
This system and method provides an interface supporting
document access and editing functions from within a docu-
ment or other active application.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11is a block diagram of a personal computer system
in accordance with a preferred embodiment of the invention;

FIG. 2 is an illustration of a display with a document
proxy in accordance with a preferred embodiment of the
invention;

FIG. 3 is a data structure of information associated with
a typical document stored in accordance with a preferred
embodiment;

FIG. 4 is a schematic that depicts a desktop screen in
accordance with a preferred embodiment;

FIG. 5 is a schematic with drop-accepting objects or target
regions highlighted in accordance with a preferred embodi-
ment;



